Implantation of neurotrophic factor-treated sensory nerve graft enhances survival and axonal regeneration of motoneurons after spinal root avulsion.

نویسندگان

  • Tak-Ho Chu
  • Suk-Yee Li
  • Anchen Guo
  • Wai-Man Wong
  • Qiuju Yuan
  • Wutian Wu
چکیده

We previously showed that motor nerves are superior to sensory nerves in promoting axon regeneration after spinal root avulsion. It is, however, impractical to use motor nerves as grafts. One potential approach to enhancing axonal regeneration using sensory nerves is to deliver trophic factors to the graft. Here, we examined the regulation of receptors for brain-derived neurotrophic factor, glial cell line-derived neurotrophic factor, ciliary neurotrophic factor, and pleiotrophin after root avulsion in adult rats. We then tested their survival-promoting and neuroregenerative effects on spinal motoneurons. The results showed that receptors for brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor were upregulated and that these trophic factors promoted survival and axonal regeneration of motoneurons when they were injected into the sensory nerve graft before implantation. In contrast, receptors for ciliary neurotrophic factor and pleiotrophin were downregulated after avulsion. Ciliary neurotrophic factor did not promote survival and axonal regeneration, whereas pleiotrophin promoted axonal regeneration but not survival of injured spinal motoneurons. Our results suggest that infusion of trophic factors into sensory nerve grafts promote motoneuron survival and axonal regeneration. The technique is technically easy and is, therefore, potentially clinically applicable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Motor nerve graft is better than sensory nerve graft for survival and regeneration of motoneurons after spinal root avulsion in adult rats.

In the present study, we compared the effects of implanting peripheral sensory nerve and motor nerve on motoneuron survival and regeneration after spinal root avulsion in adult rats. Our results showed that 116% more motoneurons regenerated axons into the motor than the sensory nerve graft and 59% of motoneurons survived in the motor nerve-implanted group compared to 48% in the sensory nerve-im...

متن کامل

Ventral root re-implantation is better than peripheral nerve transplantation for motoneuron survival and regeneration after spinal root avulsion injury

BACKGROUND Peripheral nerve (PN) transplantation and ventral root implantation are the two common types of recovery operations to restore the connection between motoneurons and their target muscles after brachial plexus injury. Despite experience accumulated over the past decade, fundamental knowledge is still lacking concerning the efficacy of the two microsurgical interventions. METHODS Thi...

متن کامل

Delayed implantation of a peripheral nerve graft reduces motoneuron survival but does not affect regeneration following spinal root avulsion in adult rats.

Adult spinal motoneurons can regenerate their axons into a peripheral nerve (PN) graft following root avulsion injury if the graft is implanted immediately after the lesion is induced. The present study was designed to determine how avulsed motoneurons respond to a PN graft if implantation takes place a few days to a few weeks later. Survival, regeneration, and gene expression changes of injure...

متن کامل

Functional regeneration of chronically injured sensory afferents into adult spinal cord after neurotrophin gene therapy.

Lesioned axons within the dorsal roots fail to regenerate through the peripheral nerve transition zone and into the spinal cord. This regenerative failure leads to a persistent loss of sensory function. To induce axonal growth across this barrier, we used recombinant adenovirus to express fibroblast growth factor-2 (FGF2), nerve growth factor (NGF), L1 cell adhesion molecule (L1), or beta-galac...

متن کامل

Lithium Enhances Axonal Regeneration in Peripheral Nerve by Inhibiting Glycogen Synthase Kinase 3β Activation

Brachial plexus injury often involves traumatic root avulsion resulting in permanent paralysis of the innervated muscles. The lack of sufficient regeneration from spinal motoneurons to the peripheral nerve (PN) is considered to be one of the major causes of the unsatisfactory outcome of various surgical interventions for repair of the devastating injury. The present study was undertaken to inve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neuropathology and experimental neurology

دوره 68 1  شماره 

صفحات  -

تاریخ انتشار 2009